28 آذر 1403
logo

مرکز تحقیقات بیوسنسور

دانشگاه علوم پزشکی تهران

  • تاریخ انتشار : 1402/05/15 - 11:43
  • تعداد بازدید : 55
  • زمان مطالعه : 1 دقیقه

Adverse effects of polystyrene nanoplastic and its binary mixtures with nonylphenol on zebrafish nervous system: From oxidative stress to impaired neurotransmitter system

Micro(nano)plastics generally co-exist with other chemicals in the environment, resulting in inevitable interaction and combined toxic effects on biota. Nevertheless, little is known regarding the interaction of nanoplastics (NPs) with other co-occurring insults. Hereby, we investigated single and combined effects of chronic exposure (45 days) to polystyrene nanoplastic particulates (PS-NPs) and nonylphenol (4-NP) on zebrafish nervous system.

 {faces}

Micro(nano)plastics generally co-exist with other chemicals in the environment, resulting in inevitable interaction and combined toxic effects on biota. Nevertheless, little is known regarding the interaction of nanoplastics (NPs) with other co-occurring insults. Hereby, we investigated single and combined effects of chronic exposure (45 days) to polystyrene nanoplastic particulates (PS-NPs) and nonylphenol (4-NP) on zebrafish nervous system. Multiple biomarkers concerning with oxidative-stress [catalase (CAT) activity and reduced glutathione (GSH) level], cholinergic system [Acetylcholinesterase (AchE) activity], glutamatergic system [glutamine synthetase (GS) and glutamate dehydrogenase (GDH) activities], energy metabolism [a-ketoglutarate dehydrogenase (a-KGDH) activity], and histological alterations were assessed. Both single and binary exposure to PS-NPs and 4-NP induced oxidative stress through reducing CAT activity and GSH level, in which a more sever effect was noticed in combined exposure. The AchE activity was significantly inhibited only in single treatment groups demonstrating antagonistic interaction between PS-NPs and 4-NP. Effects on GS activity was also alleviated in binary exposure as compared with single exposure to each contaminant. In addition, an increase in GDH activity was noticed in PS-NPs at 10 and 100 μg/L, and simultaneous presence of PS-NPs and 4-NP with a greater response were observed in combined treatments. PS-NPs and 4-NP either in separate or binary mixtures disrupted energy metabolism by deficiency of α-KGDH activity; however, co-exposure to PS-NPs and 4-NP induced more intense adverse impacts on this parameter. Furthermore, histological analysis revealed that 4-NP and PS-NPs, alone or in combination, reduced neural cells. These findings provide new insight into the neurotoxic effects of binary exposure to PS-NPs and 4-NP at environmentally relevant concentrations. Overall, our findings raise concerns about the presence and toxicity of nano-scale plastic particulates and highlight the importance of investigating the interaction of Micro(nano)plastics with other environmental irritants.

  • Article_DOI : 10.1016/j.envpol.2022.120587
  • نویسندگان : faezeh aliakbarzadeh,mohammad rafiee,fariba khodagholi,mohammad reza khorramizadeh,hamed manouchehri,akbar eslami,fatemeh sayehmiri,anoushiravan mohseni-bandpei
  • گروه خبر : مقالات,کارشناس مقالات
  • کد خبر : 244931
فاطمه رجبی
تهیه کننده:

فاطمه رجبی

0 نظر برای این مطلب وجود دارد

ارسال نظر

نظر خود را وارد نمایید:

متن درون تصویر را در جعبه متن زیر وارد نمائید *
متن مورد نظر خود را جستجو کنید
تنظیمات پس زمینه